Quantcast
Channel: Yet Another Math Programming Consultant
Viewing all articles
Browse latest Browse all 804

Piecewise linear functions and formulations for interpolation (part 2)

$
0
0
Pyomo supports a number of methods to perform piecewise linear interpolation. In part 1 [1], the following methods for piecewise linear interpolation were discussed:

  1. SOS2: use SOS2 variables to model the piecewise linear functions. This is an easy modeling exercise.
  2. BIGM_BIN: use binary variables and big-M constraints to enable and disable constraints. This is a more complex undertaking, especially if we want to use the smallest possible values for the big-M constants. Pyomo has bug in this version.
  3. BIGM_SOS1: a slight variation of the BIGM_BIN model. Pyomo has the same problem with this model.
Here I show a few more formulations:

  1. DCC: Disaggregated Convex Combination formulation is a simulation of the SOS2 model by binary variables. 
  2. CC:  Convex Combination formulation is a similar SOS2 like approach using binary variables only.
  3. MC: Multiple Choice model uses a semi-continuous approach.
  4. INCR: Incremental formulation is using all previous segments.
I'll state the formulation in mathematical notation, hopefully a little bit more accessible than in some papers I looked at, and illustrate the formulation with GAMS code to make it more concrete.

For demonstration purposes we use the same small example with 4 breakpoints and 3 segments.



Method 4: DCC - Disaggregated Convex Combination Model


This is an impressive name for a model that is actually not very complicated. 

First we define a binary variable for each segment: \[\delta_s = \begin{cases} 1 & \text{if segment $s$ is selected}\\ 0 & \text{otherwise}\end{cases}\] Then we perform interpolation on the selected segment. For this we define a weight variable: \[\lambda_{s,k} \ge 0 \] for the two end points belonging to segment \(s\).  This way we achieve the "only two neighboring weights \(\lambda\) can be nonzero" constraint from our SOS2 model. The mathematical model can look like:


DCC - Disaggregated Convex Combination Formulation
\[\begin{align} & \color{DarkRed}x = \sum_{s,k|\color{DarkBlue}SK(s,k)} \color{DarkBlue}{\bar{x}}_k \color{DarkRed}\lambda_{s,k} \\ & \color{DarkRed}y = \sum_{s,k|\color{DarkBlue}SK(s,k)} \color{DarkBlue}{\bar{y}}_k \color{DarkRed}\lambda_{s,k}\\& \color{DarkRed}\delta_s = \sum_{k|\color{DarkBlue}SK(s,k)} \color{DarkRed} \lambda_{s,k} \\& \sum_s \color{DarkRed}\delta_s=1 \\ & \color{DarkRed}\lambda_{s,k} \ge 0 \\ & \color{DarkRed}\delta_s \in \{0,1\} \end{align}\]

Here the mapping set \(SK(s,k)\) is TRUE for the two breakpoints \(k\) belonging to segment \(s\).  Here is the GAMS version:

set
  k
'breakpoints'/point1*point4/
  s
'segments'/segment1*segment3/
  sk(s,k)
'mapping'
;
sk(s,k) =
ord(s)=ord(k) orord(s)=ord(k)-1;
display sk;

table data(k,*)
          
x   y
 
point1   1   6
 
point2   3   2
 
point3   6   8
 
point4  10   7
;


positivevariable lambda(s,k) 'interpolation';
binaryvariable delta(s) 'select segment';
variable x,y;

equations
   xdef      
'x'
   ydef      
'y'
   link(s)   
'link delta-lambda'
   sumdelta  
'select segment'
;

xdef.. x =e=
sum(sk(s,k), lambda(s,k)*data(k,'x'));
ydef.. y =e=
sum(sk(s,k), lambda(s,k)*data(k,'y'));
link(s).. delta(s) =e=
sum(sk(s,k),lambda(s,k));
sumdelta..
sum(s, delta(s)) =e= 1;

x.fx = 5;

model m /all/;
option optcr=0;
solve m maximizing y using mip;
display x.l,y.l,delta.l,lambda.l;


In this model I made a strong distinction between segments \(s\) and breakpoints \(k\). This will help the GAMS model to perform domain checking (type checking), so we get a bit better protection against errors in the model. Of course, if you prefer you just can indicate segments by \(1,\dots,K-1\).

Note that the linking constraints link, perform two functions. First: they make sure that for unselected segments (with \(\delta_s=0\)), we have \(\lambda_{s,k}=0\).  Second, for the selected segment, we automatically sum the \(\lambda\)'s to 1.

The output of the model looks like:


----     13 SET sk  mapping

point1 point2 point3 point4

segment1 YES YES
segment2 YES YES
segment3 YES YES

---- 45 VARIABLE x.L = 5.000
VARIABLE y.L = 6.000

---- 45 VARIABLE delta.L

segment2 1.000


---- 45 VARIABLE lambda.L

point2 point3

segment2 0.3330.667

The display of the set SK confirms we setup the topography correctly: segment \(k\) uses points \(k, k+1\).

We fixed \(x=5\) which yields \(y=6\). We see \(\delta_2=1\) so the second segment is selected, and this is also visible from the variables \(\lambda_{s,k}\) indicating we interpolate between points 2 and 3.

We can have a look at the generated equations:


---- xdef  =E=  

xdef.. - lambda(segment1,point1) - 3*lambda(segment1,point2) - 3*lambda(segment2,point2) - 6*lambda(segment2,point3)

- 6*lambda(segment3,point3) - 10*lambda(segment3,point4) + x =E= 0 ; (LHS = 5, INFES = 5 ****)


---- ydef =E=

ydef.. - 6*lambda(segment1,point1) - 2*lambda(segment1,point2) - 2*lambda(segment2,point2) - 8*lambda(segment2,point3)

- 8*lambda(segment3,point3) - 7*lambda(segment3,point4) + y =E= 0 ; (LHS = 0)


---- link =E=

link(segment1).. - lambda(segment1,point1) - lambda(segment1,point2) + delta(segment1) =E= 0 ; (LHS = 0)

link(segment2).. - lambda(segment2,point2) - lambda(segment2,point3) + delta(segment2) =E= 0 ; (LHS = 0)

link(segment3).. - lambda(segment3,point3) - lambda(segment3,point4) + delta(segment3) =E= 0 ; (LHS = 0)


---- sumdelta =E=

sumdelta.. delta(segment1) + delta(segment2) + delta(segment3) =E= 1 ; (LHS = 0, INFES = 1 ****)

In a sense we simulated the SOS2 model using binary variables. More visible here is the two-step approach:

  1. Select the segment \(s\) using the binary variables \(\delta_s\).
  2. Interpolate between the breakpoints of this segment using the positive variables \(\lambda_{s,k}\).
Of course in a MIP model we have simultaneous equations, so these things happen actually at the same time. The 2-step paradigm is more of a useful mental model.


Method 5: CC - Convex Combination Model


This formulation is very similar to the previous one. The main difference is the structure of the \(\lambda\) variables. We index them by \(k\) only. This is more like the SOS2 model.  The manner in which we link \(\lambda_k\) to \(\delta_s\) becomes somewhat different. Instead of an equality we use an inequality \[\lambda_k \le \sum_{s|SK(s,k)}\delta_s \] This make sure that only for a selected segment with \(\delta_s=1\), the corresponding \(\lambda_k\)'s can be nonzero. We need to add explicitly that \(\sum_k \lambda_k=1\) as this is no longer implied by the linking constraints. The model looks like:


CC - Convex Combination Formulation
\[\begin{align} & \color{DarkRed}x = \sum_k \color{DarkBlue}{\bar{x}}_k \color{DarkRed}\lambda_{k} \\ & \color{DarkRed}y = \sum_k \color{DarkBlue}{\bar{y}}_k \color{DarkRed}\lambda_{k} \\ & \sum_k \color{DarkRed}\lambda_k = 1 \\& \color{DarkRed} \lambda_k \le \sum_{s|\color{DarkBlue}SK(s,k)} \color{DarkRed}\delta_s \\& \sum_s \color{DarkRed}\delta_s=1 \\ & \color{DarkRed}\lambda_k \ge 0 \\ & \color{DarkRed}\delta_s \in \{0,1\} \end{align}\]


This model has fewer continuous variables than the DCC model. The GAMS version looks like:

set
  k
'breakpoints'/point1*point4/
  s
'segments'/segment1*segment3/
  sk(s,k)
'mapping'
;
sk(s,k) =
ord(s)=ord(k) orord(s)=ord(k)-1;
display sk;

table data(k,*)
          
x   y
 
point1   1   6
 
point2   3   2
 
point3   6   8
 
point4  10   7
;


positivevariable lambda(k) 'interpolation';
binaryvariable delta(s) 'select segment';
variable x,y;

equations
   xdef      
'x'
   ydef      
'y'
   link(k)   
'link delta-lambda'
   sumlambda 
'interpolation'
   sumdelta  
'select segment'
;

xdef.. x =e=
sum(k, lambda(k)*data(k,'x'));
ydef.. y =e=
sum(k, lambda(k)*data(k,'y'));
link(k).. lambda(k) =l=
sum(sk(s,k),delta(s));
sumlambda..
sum(k, lambda(k)) =e= 1;
sumdelta..
sum(s, delta(s)) =e= 1;

x.fx = 5;

model m /all/;
option optcr=0;
solve m maximizing y using mip;
display x.l,y.l,delta.l,lambda.l;

The output (including the generated equations) is:


Generated equations
---- xdef  =E=  x

xdef.. - lambda(point1) - 3*lambda(point2) - 6*lambda(point3) - 10*lambda(point4) + x =E= 0 ; (LHS = 5, INFES = 5 ****)


---- ydef =E= y

ydef.. - 6*lambda(point1) - 2*lambda(point2) - 8*lambda(point3) - 7*lambda(point4) + y =E= 0 ; (LHS = 0)


---- link =L= link delta-lambda

link(point1).. lambda(point1) - delta(segment1) =L= 0 ; (LHS = 0)

link(point2).. lambda(point2) - delta(segment1) - delta(segment2) =L= 0 ; (LHS = 0)

link(point3).. lambda(point3) - delta(segment2) - delta(segment3) =L= 0 ; (LHS = 0)

link(point4).. lambda(point4) - delta(segment3) =L= 0 ; (LHS = 0)

Solution
---- sumlambda  =E=  interpolation

sumlambda.. lambda(point1) + lambda(point2) + lambda(point3) + lambda(point4) =E= 1 ; (LHS = 0, INFES = 1 ****)


---- sumdelta =E= select segment

sumdelta.. delta(segment1) + delta(segment2) + delta(segment3) =E= 1 ; (LHS = 0, INFES = 1 ****)


---- 49 VARIABLE x.L = 5.000
VARIABLE y.L = 6.000

---- 49 VARIABLE delta.L select segment

segment2 1.000


---- 49 VARIABLE lambda.L interpolation

point2 0.333, point3 0.667



The methods DCC and CC simulate our SOS2 model from [1] using binary variables. This means the model can handle step functions (we don't need to form a slope). The models are not too difficult to setup, as is illustrated by the GAMS models implementing them.

Method 6: MC - Multiple Choice formulation


This is a well-known method. We assume we can calculate slopes and intercepts for each segment. I.e. we have \[ y = a_s + b_s x\>\> \text{ if $\bar{x}_s \le x \le \bar{x}_{s+1}$} \]  with \[\begin{align} & a_s = \frac{\bar{y}_{s+1}-\bar{y}_s}{\bar{x}_{s+1}-\bar{x}_s} \\ & b_s = \bar{y}_s -  a_s \bar{x}_s \end{align}\]

For the model we introduce binary variables \(\delta_s\) to indicate which segment is selected, and so-called semi-continuous variables \(v_s \in {0} \cup [\bar{x}_s,\bar{x}_{s+1}] \). The variable \(v_s\) can be modeled as \[\bar{x}_s \delta_s \le v_s \le \bar{x}_{s+1} \delta_s \]

With this we can formulate the complete model:


MC - Multiple Choice Formulation
\[\begin{align} & \color{DarkRed}x = \sum_s \color{DarkRed}v_s \\ & \color{DarkRed}y = \sum_s \left( \color{DarkBlue}a_s \color{DarkRed} v_s + \color{DarkBlue}b_s \color{DarkRed} \delta_s \right) \\ &\color{DarkBlue}{\bar{x}}_s \color{DarkRed}\delta_s \le \color{DarkRed}v_s \le \color{DarkBlue}{\bar{x}}_{s+1} \color{DarkRed}\delta_s \\& \sum_s \color{DarkRed}\delta_s=1 \\ & \color{DarkRed}\delta_s \in \{0,1\}\\ & \color{DarkBlue}a_s = \frac{\color{DarkBlue}{\bar{y}}_{s+1}-\color{DarkBlue}{\bar{y}}_s}{\color{DarkBlue}{\bar{x}}_{s+1}-\color{DarkBlue}{\bar{x}}_s} \\ &\color{DarkBlue}b_s = \color{DarkBlue}{\bar{y}}_s - \color{DarkBlue} a_s \color{DarkBlue}{\bar{x}}_s \end{align}\]


Notes:

  • The sandwich equation  \(\bar{x}_s \delta_s \le v_s \le \bar{x}_{s+1} \delta_s \) must likely be implemented as two inequalities.
  • This construct says: \(v_s=0\) or \(v_s \in [\bar{x}_s, \bar{x}_{s+1}]\). \(v_s\) is sometimes called semi-continuous.
  • The variables \(\delta_s\) and \(v_s\) are connected: \[\begin{align} &\delta_s = 0 \Rightarrow v_s = 0\\ & \delta_s = 1 \Rightarrow v_s = x\end{align}\] I.e. they operate in parallel.
  • I have seen cases where this model outperformed the SOS2 formulation.

The GAMS model is simple:

set
  k
'breakpoints'/k1*k4/
  s(k)
'segments'/k1*k3/
;

table data(k,*)
      
x   y
 
k1   1   6
 
k2   3   2
 
k3   6   8
 
k4  10   7
;

data(s(k),
'dx') = data(k+1,'x')-data(k,'x');
data(s(k),
'dy') = data(k+1,'y')-data(k,'y');
data(s(k),
'slope') = data(k,'dy')/data(k,'dx');
data(s(k),
'intercept') = data(k,'y')-data(k,'slope')*data(k,'x');
display data;

variable v(s) 'equal to x or 0';
binaryvariable delta(s) 'select segment';
variable x,y;

equations
   xdef      
'x'
   ydef      
'y'
   semicont1(k)
   semicont2(k)
   sumdelta  
'select segment'
;

xdef.. x =e=
sum(s, v(s));
ydef.. y =e=
sum(s, data(s,'slope')*v(s)+data(s,'intercept')*delta(s));
semicont1(s(k)).. v(s) =l= data(k+1,
'x')*delta(s);
semicont2(s)..    v(s) =g= data(s,
'y')*delta(s);
sumdelta..
sum(s, delta(s)) =e= 1;

x.fx = 5;

model m /all/;
option optcr=0;
solve m maximizing y using mip;
display data,x.l,y.l,delta.l,v.l;




The results look like:


----     43 PARAMETER data  

x y dx dy slope intercept

k1 1.0006.0002.000 -4.000 -2.0008.000
k2 3.0002.0003.0006.0002.000 -4.000
k3 6.0008.0004.000 -1.000 -0.2509.500
k4 10.0007.000


---- 43 VARIABLE x.L = 5.000
VARIABLE y.L = 6.000

---- 43 VARIABLE delta.L select segment

k2 1.000


---- 43 VARIABLE v.L equal to x or 0

k2 5.000


Segment 2 is selected. We can see that directly from the binary variable \(\delta_s\), but also from the semi-continuous variable \(v_s\).

Method 7: INC - Incremental Formulation


In the incremental or delta method we add up all contributions of "earlier" segments, to find our \(x\) and \(y\).

Let \(s'\) be the segment that contains our current \(x\). We define a binary variable \(\delta_{s}\) as \[\delta_{s} = \begin{cases} 1 & \text{for $s\lt s'$}\\ 0  & \text{for $s \ge s'$}\end{cases}\] In addition we use a continuous variable \(\lambda_s \in [0,1]\) indicating how much of each segment we "use up". The contribution for earlier segments is 1 and for the current segment we have a fractional value. So we have: \[\begin{cases}  \lambda_{s} = 1 & \text{for $s\lt s'$} \\\lambda_{s} \in [0,1] & \text{for $s= s'$}  \\ \lambda_{s} = 0 & \text{for $s\gt s'$}\end{cases}\] With these definitions we can write: \[\begin{align} x = \bar{x}_1 + \sum_s \lambda_s (\bar{x}_{s+1} - \bar{x}_s) \\ y = \bar{y}_1 + \sum_s \lambda_s (\bar{y}_{s+1} - \bar{y}_s) \end{align}\]

Now we need to formulate a structure that enforce these rules on \(\delta\) and \(\lambda\). The following will do that: \[\lambda_{s+1} \le \delta_s \le \lambda_s\] Typically you will need to implement this as two separate constraints.

The complete model looks like:


INC - Incremental Formulation
\[\begin{align} & \color{DarkRed}x = \color{DarkBlue}{\bar{x}}_1 + \sum_s \color{DarkRed}\lambda_s (\color{DarkBlue}{\bar{x}}_{s+1} - \color{DarkBlue}{\bar{x}}_s) \\ & \color{DarkRed}y = \color{DarkBlue}{\bar{y}}_1 + \sum_s \color{DarkRed}\lambda_s (\color{DarkBlue}{\bar{y}}_{s+1} - \color{DarkBlue}{\bar{y}}_s) \\ & \color{DarkRed} \lambda_{s+1} \le \color{DarkRed}\delta_s \le \color{DarkRed}\lambda_s \\ & \color{DarkRed} \delta_s \in \{0,1\} \\ & \color{DarkRed} \lambda_s \in [0,1] \end{align}\]

We can see that we can fix the last \(\delta_s=0\). The model will behave correctly without this, but we may help the presolver a bit with this.


The GAMS model can look like:

set
  k
'breakpoints'/k1*k4/
  s(k)
'segments'/k1*k3/
;

table data(k,*)
      
x   y
 
k1   1   6
 
k2   3   2
 
k3   6   8
 
k4  10   7
;

positivevariable lambda(s) 'contribution factor of segment';
lambda.up(s) = 1;
binaryvariable delta(s) 'previously contributing segments';
variable x,y;

equations
   xdef      
'x'
   ydef      
'y'
   link1(s)  
'links lambda delta'
   link2(s)  
'links lambda delta'
;

* fix last delta(s) to 0.
* this is not strictly needed
delta.fx(s)$(
ord(s)=card(s)) = 0;

xdef.. x =e= data(
'k1','x')+ sum(s(k), lambda(s)*(data(k+1,'x')-data(k,'x')));
ydef.. y =e= data(
'k1','y')+ sum(s(k), lambda(s)*(data(k+1,'y')-data(k,'y')));
link1(s)..  lambda(s+1) =l= delta(s);
link2(s)..  delta(s) =l= lambda(s);

x.fx = 7;

model m /all/;
option optcr=0;
solve m maximizing y using mip;
display x.l,y.l,delta.l,lambda.l;



Note that in equation link1, we go one position too far when addressing \(\lambda_{s+1}\) for the last \(s\). GAMS will make that reference zero, and that is correct for this case. We see in the equation listing:


---- link1  =L=  links lambda delta

link1(k1).. lambda(k2) - delta(k1) =L= 0 ; (LHS = 0)

link1(k2).. lambda(k3) - delta(k2) =L= 0 ; (LHS = 0)

link1(k3).. - delta(k3) =L= 0 ; (LHS = 0)

The solution is


----     36 VARIABLE x.L                   =        5.000
VARIABLE y.L = 6.000

---- 36 VARIABLE delta.L previously contributing segments

k1 1.000


---- 36 VARIABLE lambda.L contribution factor of segment

k1 1.000, k2 0.667


References


  1. Piecewise linear functions and formulations for interpolation (part 1), http://yetanothermathprogrammingconsultant.blogspot.com/2019/02/piecewise-linear-functions-and.html
  2. Keely L. Croxton, Bernard Gendron, Thomas L. Magnanti, A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems, Management Science, Volume 49, Issue 9, 2003, pages 1121-1273

Viewing all articles
Browse latest Browse all 804

Trending Articles